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Motivation
Objective is solution of hyperbolic conservation laws:

Ut + ∇ · ~F (U) = 0 in Ω(t) × [0, T ].

1D Burgers’s equation:

U = u, F (U) =
u2

2

1D gas dynamics:

U =









ρ

ρu

E









, F (U) =









ρu

ρu2 + p

uE + pu
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Motivation
Eulerian methods

mesh is fixed

Lagrangian methods
mesh moves with the fluid velocity

Arbitrary Lagrangian-Eulerian (ALE) methods
mesh moves with an arbitrary velocity
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Motivation: decoupled ALE methods

1. Lagrangian step
explicit or implicit time integration of hyperbolic equations

2. Mesh motion step
Error-Minimization-Based (EMB) method

3. Remapping step
conservative interpolation onto the modified mesh
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Motivation: goal-oriented ALE methods
The goal-oriented mesh optimization saves the simulation
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Motivation: goal-oriented ALE methods
The geometric mesh optimization may not improve solution accuracy

The goal-oriented mesh optimization requires less time steps
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Motivation: related methods
decoupled ALE methods

variational methods (J.Brackbill, J.Saltzman, A.Winslow, etc.)
harmonic maps (B.Azarenok, S.Ivanenko, T.Tang, etc.)
monitor-based methods (T.Tang, W.Huang, R.Russell, etc.)
methods using physical analogies (spring systems, elastic media, etc)

coupled ALE methods
moving finite elements (M.Baines, K.Miller, etc.)
moving finite differences (E.Dorfi, L.Drury)
moving mesh PDEs (W.Huang, R.Russell, etc.)
deformation methods (P.Bochev, B.Semper, G.Liao, etc.)
many others (J.Hyman, A.Harten, B.Perot, L.Petzold, etc.)
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The EMB method
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Viscous Burgers’ equation

∂u

∂t
+

∂

∂x

(

u2

2

)

= ε
∂2u

∂x2
in (0, 1) × [0, T ].

may develop shock-like solutions
the solution is smooth
easy to analyze and to present the big idea
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Viscous Burgers’ equation
Mesh: xn

0 < . . . < xn
M+1

Unknowns: un
i+1/2 ≈

1

hn
i+1/2

∫ xn
i+1

xn
i

u(x, tn) dx
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Viscous Burger’s equation
Consider the simplest time integration scheme:

hn+1
i+1/2u

n+1
i+1/2 = hn

i+1/2u
n
i+1/2 + F n

i+1 − F n
i

xn+1
i = xn

i + ∆tnun
i

where

F n
i =

1

2
(un

i )
2 + ε

un
i+1/2 − un

i−1/2

(hn
i+1/2 + hn

i−1/2)/2
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Design model for the EMB method

Definition
of error

Add
constraints

Use solution
regularity &
constraints

?

?

Error
functional

-

?

-

-

6
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Definition of error
The ideal error functional:

Φ(xn) =
M

∑

i=0

xn+1

i+1
∫

xn+1

i

|u(x, tn+1) − un+1
i+1/2|

2 dx

where xn = (xn
1 , . . . , x

n
M).

xn+1

i and un+1

i+1/2
depends on x

n.

space discretization error
time integration error
remapping error

iterative process
a posteriori error estimates
simplified for smooth solutions

Look-ahead strategy
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Add constraints

Minimize

Φ(xn) =
M

∑

i=0

xn+1

i+1
∫

xn+1

i

|u(x, tn+1) − un+1
i+1/2|

2 dx

over a class of smooth meshes.
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Add constraints
1. mesh is smooth:

hn
i+1/2 ∼ h, |hn

i+1/2 − hn
i−1/2| ∼ h2

2. remapping is 2nd order accurate

3. solution is exact at time t = tn:

un
i+1/2 =

1

hn
i+1/2

xn
i+1

∫

xn
i

u(x, tn) dx
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Use solution regularity & constraints
Main result:

Φ(xn) = Φ0(x
n) + O((h + ∆tn)3)

where

Φ0(x
n) =

M
∑

i=0

xn
i+1

∫

xn
i

|u(x, tn) − un
i+1/2|

2 dx.

The problem of the best piecewise constant fit at time tn (M. Baines).

This justifies data lagging in mesh equation.
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Use solution regularity & constraints

Φ0(x
n) = Φ1(x

n) + O(h3)

where

Φ1(x
n) =

1

12

M
∑

i=0

[

δun

δx

]2

i+1/2

(

hn
i+1/2

)3

and
[

δun

δx

]

i+1/2

=
∂u

∂x
(xn

i+1/2) + O(h).
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Use solution regularity & constraints
Minimize

Φ1(x
n) =

1

12

M
∑

i=0

[

δun

δx

]2

i+1/2

(

hn
i+1/2

)3

over a class of smooth meshes.

the EMB method does not equidistribute the error
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Smooth meshes
Consider equation

(I − α(α + 1)A)







h̃1/2
...

h̃M+1/2






=







h1/2
...

hM+1/2







where

(Ah̃)i+1/2 = h̃i−1/2 − 2h̃i+1/2 + h̃i+3/2.

Then,
α

α + 1
≤

h̃i−1/2

h̃i+1/2

≤
α + 1

α
.
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Smooth meshes
smoothing preserves main features of h
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smoothing is performed in the logical space
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Two algorithm

Algorithm 1
find the minimizer of functional Φ1(x

n)

smooth the mesh

Algorithm 2
modify the error functional
prove that its minimizer is a smooth mesh
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Smoothed error functional
Minimize

Φ2(x
n) =

1

12

M
∑

i=0

[

S−1

(

δun

δx

)]2

i+1/2

(

hn
i+1/2

)3

where S = I − α(α + 1)A.

This solves the problem of minimizing

Φ(xn) =
M

∑

i=0

∫ xn+1

i+1

xn+1

i

|u(x, tn+1) − un+1
i+1/2|

2 dx

over a class of smooth meshes.

the EMB method equidistributes the smoothed error
[

S−1(·)
]2/3

i+1/2
hi+1/2 = constant

it produces a smooth mesh in regions where the
error is 0.

LANL, Sep 28 – p. 23/45



Smoothed error functional
Minimize

Φ2(x
n) =

1

12

M
∑

i=0

[

S−1

(

δun

δx

)]2

i+1/2

(

hn
i+1/2

)3

where S = I − α(α + 1)A.

This solves the problem of minimizing

Φ(xn) =
M

∑

i=0

∫ xn+1

i+1

xn+1

i

|u(x, tn+1) − un+1
i+1/2|

2 dx

over a class of smooth meshes.

the EMB method equidistributes the smoothed error
[

S−1(·)
]2/3

i+1/2
hi+1/2 = constant

it produces a smooth mesh in regions where the
error is 0.

LANL, Sep 28 – p. 23/45



Smoothed error functional
Minimize

Φ2(x
n) =

1

12

M
∑

i=0

[

S−1

(

δun

δx

)]2

i+1/2

(

hn
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Φ(xn) =
M

∑

i=0

∫ xn+1

i+1

xn+1

i

|u(x, tn+1) − un+1
i+1/2|

2 dx

over a class of smooth meshes.

the EMB method equidistributes the smoothed error
[

S−1(·)
]2/3

i+1/2
hi+1/2 = constant

it produces a smooth mesh in regions where the
error is 0.

LANL, Sep 28 – p. 23/45



Numerical experiments
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Viscous Burgers’ equation
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Viscous Burgers’ equation
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Viscous Burgers’ equation
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Slowly moving contact
ρL = 1.4 ρR = 1.0

pL = 1 pR = 1

uL = 0.1 uR = 0.1
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without space smoothing, all points will gather around the contact
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Slowly moving contact: solution

profiles of density and internal energy
solutions on the adaptive mesh are sharper
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Sedov’s problem
ρL = 1 ρR = 1

eL = 340000 pR = 0.00001

uL = 0 uR = 0
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Sedov’s problem: solution
profiles of density and velocity
density is 2.2 times more accurate (velocity - 1.6
times)
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Woodward-Collela’s problem
ρL = 1 ρC = 1 ρR = 1

eL = 2500 eC = 0.025 eR = 250

uL = 0 uC = 0 uR = 0
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Woodward-Collela: non-linear CG
Gauss-Seidel CG

1e-3 27 9 43.6% 21 9 43.6%
1e-4 269 13 43.8% 109 13 44.5%
1e-5 979 16 47.2% 412 16 46.1%
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the mesh equation can be solved approximately
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Woodward-Collela: non-linear CG
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under-resolved weak shocks
simple time smoothing, xn := γxn + (1 − γ)xn−1,
may not be sufficient
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Sod’s shock tube
ρL = 1 ρR = 0.125

pL = 1 pR = 0.1

uL = 0 uR = 0
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Sod’s shock tube: solution

profiles of density, internal energy and velocity
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Sod’s shock tube: efficiency
initial mesh is uniform
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the EMB method requires tuning for the computational efficiency
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Sod’s shock tube: efficiency
initial mesh is adapted to the density profile
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for CPU time t = 10s, the Lagrangian and EMB errors are 0.0035 and
0.0021 on meshes with 300 and 110 cells, respectively.
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Sod’s shock tube: non-linear CG
Gauss-Seidel CG Newton-CG

1e-3 22 8 18.8% 18 8 18.7% 41 7 16.3%
1e-4 297 10 18.1% 93 12 17.7% 239 10 17.9%
1e-5 487 15 18.3% 224 15 17.5% no data
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the mesh equation can be solved approximately
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Sod’s shock tube: non-linear CG
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error dynamics does not match solution dynamics
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2D extension: error smoothing
smoothing preserves main features of h
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2.7 · 10−6 ≤ [h] ≤ 3.7 · 105 0.57 ≤ [h̃] ≤ 1.8

smoothing is performed in the logical space (M-matrix close to I)
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2D extension: constraint minimization

Minimize

Φ2(x
n,yn) =

∑

cells

[

S−1

(

δun

δx
,
δun

δy

)]a

c

V b
c

over a class of meshes with convex cells.
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2D extension: constraint minimization
The idea is to minimize

Φ3(x
n,yn) =

∑

cells

[

S−1

(

δun

δx
,
δun

δy

)]a

c

V b
c Cc

where Cc ≥ 1 measures the cell convexity.

If the equidistribution principle holds, we get

V b
c Cc ∼ V b

n Cn.
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2D extension: examples
The analytical solution is given

example III: two parallel waves

mesh cells become stretched but still convex

example IV: two perpendicular waves

the boundary cells are controlled by the smoothing parameter α

example I: bouncing ball

solution is constant everywhere expect a small region around the circle.

example II: rotating saddle

velocity field makes the problem difficult for Lagrangian simulations.
solution is constant everywhere except a small region around the
saddle.
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Conclusion
The analysis explains why the mesh equation can be
solved very approximately and input data can be
lagged.

Space smoothing is necessary for problems with
smooth solutions.

Time smoothing is crucial for problems with shocks.

In Lagrangian gasdynamics, there exists a class of
problems where the moving mesh methods save
simulation or improve accuracy of solutions.
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